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Phenomenological theory of the Mott transition is presented. When the critical tempera-

ture of the Mott transition is much higher than the quantum degeneracy temperature, the

transition is essentially described by the Ising universality class. Below the critical tem-

perature, phase separation or first-order transition occurs. However, if the critical point is

involved in the Fermi degeneracy region, a marginal quantum critical point appears at zero

temperature. The originally single Mott critical point generates subsequent many unsta-

ble fixed points through various Fermi surface instabilities induced by the Mott criticality

characterized by the diverging charge susceptibility or doublon susceptibility. This occurs in

marginal quantum-critical region. Charge, magnetic and superconducting instabilitites com-

pete severely under these critical charge fluctuations. The quantum Mott transition triggers

multi-furcating criticality, which goes beyond the conventional concept of multicriticality

in quantum phase transitions. Near the quantum Mott transition, the criticality generically

drives growth of inhomogeneous structure in the momentum space with singular points of flat

dispersion on the Fermi surface. The singular points determine the quantum dynamics of the

Mott transition by the dynamical exponent z = 4. We argue that many of filling-control Mott

transitions are classified to this category. Recent numerical results as well as experimental re-

sults on strongly correlated systems including transition metal oxides, organic materials and
3He layer adsorbed on a substrate are consistently analyzed especially in two-dimensional

systems. The mechanism of cuprate high-Tc superconductivity is also discussed in the light

of the present insight and interpreted from the multi-furcation instability.

KEYWORDS: Ginzburg-Landau theory, quantum phase transition, Mott transition, multi-

furcation, two-dimensional Hubbard model, high-Tc superconductivity, quantum

critical phenomena, marginal critical point, high-Tc superconductivity, phase

separation

1. Introduction

Recently, enormous number of experimental results have been accumulated on properties

of metals near correlated insulators such as the Mott insulator.1 In these results, the na-

ture shows diverse properties depending on subtle differences in systems and ranging from

strongly renormalized Fermi liquid, charge order, magnetic order to superconductivity at low

temperatures. More complicated and entangled phase diagrams and very sensitive responses

to external perturbations are also observed. In some cases, severe competitions of multiple
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orders are found. Inhomogeneous structure at the Fermi surface is also widely observed partic-

ularly in the high-Tc cuprates. This includes an emergence of flat dispersion in special region

of the Brillouin zone as in the (π, 0) and (0, π) regions in the high-Tc cuprates.1–3 Spatially in-

homogeneous structure is also widely recognized in the cuprates4 as well as in manganaites.5,6

Such dramatic competitions and self-organized structure formations in real and momentum

spaces have not been expected in weakly correlated electron systems.

Intensive studies on theoretical models of strongly correlated electrons have also revealed

subtlety of the results on stabilities of phases and controversies depending on approaches,

approximations and the models themselves.1 These controversies and diversities both in the-

ories and experiments consistently show not necessarily the failure of the present theoretical

treatments for each problem but the emergence of an underlying new class of phenomena and

necessity for a new concept in physical systems in a region of strong electron correlation to

reproduce the diversity and sensitivity.

In this paper, a phenomenological theory of the Mott physics emerging near the Mott

insulator is studied and insights from recent experimental results together with numerical

results of theoretical models are analyzed. We show that the Mott transition of Fermion

systems and its criticality provides a new type of quantum phase transitions, where a classical

Ising-type transition is transformed to a quantum one in a unique way. This unique feature

naturally accounts for diversity of phenomena with underlying strong competition of orders,

emergence of structure in real and momentum spaces.

When the critical temperature of the Mott transition is much higher than the energy scale

of the quantum degeneracy, the transition at the critical point retains a classical nature, which

is analogous to the gas-liquid transition. Around the critical point, the diverging and critical

density fluctuation is expected. At low temperatures, the transition is of the first order and

strong quantum fluctuations do not appear.

The gas-liquid type transition (or phase separation) in quantum systems was studied by

Blume, Emery and Griffiths7 in the context to understand the phase diagram of 3He-4He mix-

ture with the superfluid transition of 4He being involved. For Fermion systems, Castellani et

al.8 extended this study to the Fermion Hubbard model by including magnetic degrees of free-

dom and the doubly occupied sites as well. The metal-to-insulator transition may be treated

by the analogy to the gas-liquid transition in this framework and Kotliar et al.9,10 indeed de-

rived the Ising-type transition within the framework of the dynamical mean field theory.11,12

The critical temperature was high enough so that it was recognized to be equivalent to the

classical Ising-type transition and quantum effects are rather irrelevant. A fundamental open

problem still remains in the issue how quantum effects alter the criticality of the conventional

gas-liquid or bainary-alloy transitions of the Ising type.

In Fermion systems, if the critical temperature at the termination point of the first-order
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transition is suppressed, the diverging density fluctuations inherent at the critical point of the

gas-liquid transition become involved in the quantum Fermi degeneracy region. The Fermi

degeneracy by itself generates various instabilities called the Fermi surface effects. Then the

coexistence of these two becomes an intriguing issue.

The purpose of this paper is to show that the coexistence of the Fermi degeneracy and

the critical density fluctuations yields a new type of quantum criticality. The Mott transition

offers a salient example of this issue. At this quantum criticality, the mother transition, namely

the Mott transition triggers various daughter instabilities and quantum criticalities such as

charge, magnetic, and superconducting transitions. In other words, at the unstable fixed point

of the root transition, namely the Mott transition, because of its criticality itself, it generates

many other unstable fixed points simultaneously if it coexists with a quantum degeneracy. The

coexistence also induces inhomogeneity at the Fermi surface in the momentum space as well

as in real space. As far as the author knows, this type of multi-furcating or cascading quantum

criticality originating from one quantum phase transition has never been considered before

and offers a new type of physics beyond the conventional theory of multicritical phenomena in

quantum phase transitions as we discuss later. The critical region may not be characterized by

simple critical exponents but by possible cascading and hierarchical structure formations. The

phenomena must first be understood as a whole; not by individual competitions and transitions

but from a synergetic viewpoint. Quantum critical phenomena have been intensively studied

in case of the magnetic critical point, where the vanishing magnetic critical temperature in

metals causes non-Fermi liquid behavior and large fluctuations in the critical region.?,?, 1 In

the present case, quantum criticality of the Mott transition generates a quite different type

through diverging charge fluctuations, where the critical temperature as the end point of

a first-order transition of the electronic (or excitonic) density is suppressed and a marginal

critical point appears at zero temperature.

The applicability of this new class of quantum criticality is not confined to the Mott tran-

sition but may also be extended to other type of first-order transitions such as the charge

order transitions when their critical points are involved in the Fermi degeneracy region. Such

examples may also be found near the first-order chage of the valence in heavy fermioin com-

pounds. Valence fluctuations in heavy fermion compounds and density fluctuations for charge

orders in organic and transition metal compounds offer such examples.

In Sec. 2, we summarize the general scheme of the Ginzburg-Landau (GL) expansion

within the classical framework. In Sec. 3, two-parameter expansion for the Mott transition is

formulated. In Sec. 4, we discuss comparison with results of recent numerical and microscopic

calculations as well as comparison with experimental results. We consider quantum effects in

Sec. 5. A two-fluid model of the Mott transition is presented in Sec. 6. Section 7 is devoted

to a consequence of the coexistence of the Fermi degeneracy and the Mott criticality, where

3/28



J. Phys. Soc. Jpn. Full Paper

multi-furcation instability is considered. In Sec.8, insights into experimental indications are

discussed. A mechanism of high-temperature superconductivity is also considered.

2. Ginzburg-Landau (GL) Expansion

2.1 Classical GL Picture

At finite temperatures, a metal and an insulator may be separated in the phase diagram if

a first-order transition takes place. The first-order transition should terminate at the critical

end point at a finite temperature Tc. To understand the origin of the first-order transition,

the equivalence with the gas-liquid transitions or the binary-alloy phase separation has been

identified.9,10

In the mean-field Ginzburg-Landau (GL) expansion of the conventional gas-liquid transi-

tion, the free energy is expressed by coarse-grained variables of the natural order parameter,

namely, the density n as

F =
1

2
a(T − Tc)n

2 +
1

4
bn4 (1)

with a and b being constants. Here the density is measured from the critical density. At the

critical temperature T = Tc, in this mean-field theory, the charge susceptibility (compress-

ibility) χc ≡ (d2F/dn2)−1 diverges as χc = 1/(3bn2) at n = 0, which results in diverging and

critical density fluctuations. As a function of temperature, the charge susceptibility also di-

verges at the critical density as χc ∝ (T −Tc)
−γ with the mean-field exponent γ = 1. Below Tc,

the first-order transition between gas and liquid occurs between n =
√

a/b and n = −
√

a/b.

The Mott transition has been considered in the GL expansion in the dynamical mean-field

theory.9,10 Essentially, the dynamical mean-field theory reproduces the Ising-type transition.

The natural order parameter is identified as the single-particle local Green’s function itself,

which represents the transition between localized and itinerant nature of electrons at zero

frequency. The transition is well defined at finite temperatures when the structure of the

low-frequency Green’s function shows a jump as the first-order transition.

2.2 Two Routes of Mott Transition

Microscopically, the driving force of the Mott transition arises from the competition of the

kinetic energy and the interaction energy of electrons. The N -site Hubbard model defined by

H = Ht +
∑

i

HUi − µMN (2)

Ht = −
∑

〈ij〉

tij(c
†
iσcjσ + h.c.) (3)

(4)

and

HUi = U(ni↑ −
1

2
)(ni↓ −

1

2
), (5)
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represents this competition in a simplest way. Here, M ≡ ∑

iσ niσ/N and niσ = c†iσciσ with

the creation (annihilation) operator c†iσ(ciσ) of an electron at the site i with the spin σ. The

chemical potential is µ and U is the onsite Coulomb repulsion. The competition of the kinetic

and interaction energies can be controlled by two independent parameters, one, the bandwidth

relative to the interaction and the other, the chemical potential µ. Then the first route of the

Mott transition is realized by changing the ratio tij/U . The first route, the bandwidth-control

transition may also be driven by changing U itself. The other route is actually realized in

many cases by changing the filling, which is the conjugate quantity to the control parameter

µ. The natural order parameter of the transition is given by the quantity conjugate to the

control parameter. In the Hubbard model Hamiltonian, the conjugate quantity to the control

parameter U is nothing but the avearged double occupancy defined by the “doublon density”,

nd ≡ 〈ni↑ni↓〉 as we see from Eq.(5). Therefore, nd or the averaged empty site defined by

the “holon density”, nh ≡ 〈(1 − ni↑)(1 − ni↓)〉 may be taken as a natural order parameter of

phenomenological theory for the bandwidth-control transition at half filling. At half filling,

we have the constraint nd = nh. The natural order parameter of the second route is given

by the filling n ≡ 〈M〉 or the doping concentration δ = 1 − n, which is conjugate to the

chemical potential µ. Then the GL expansion may be taken by the double expansion of two

independent parameters, νs = nd + nh and δs = nh − nd.

3. Two-Parameter GL Expansion for Mott Transition

3.1 Framework

The GL expansion of the free energy near the critical point may be phenomenologically

constructed from the expansion in terms of two natural order parameters ν = νs − ν0 and

δ = δs − δc measured from the critical points, ν = ν0 and δ = δc. Here, the control parameter

is shifted from νs to ν and measured from the critical value ν0. Near the critical point of the

bandwidth-control transition, the free energy is expanded as

F =
1

2
Ah0(T − Tch0)δ

2 +
1

2
Ad(T − Tcd)ν

2

+
1

4
Bh0δ

4 +
1

2
Bhdδ

2ν2 +
1

4
Bdν

4, (6)

where Ah0, Ad, Bh0, Bd, Bhd, Tch0 and Tcd are positive constants. Odd order terms do not

appear because of the symmetry of the critical point. In this coarse grained form, only ν and

δ are retained as variables and this form should be regarded as the result after tracing out

other degrees of freedom including spins. Since the two control parameters are independent,

the critical temperatures Tch0 and Tcd are not necessarily the same in this formulation. From

the minimization with respect to ν, the double occupancy at the free energy minimum is given
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by

ν = νm ≡ ±
√

Ad(Tcd − T ) − Bhdδ2

Bd
. (7)

for T < Tcd and |δ| ≤ δw ≡
√

Ad(Tcd − T )/Bhd. For |δ| > δw, F is minimized at ν = νm = 0.

One consequence of this form of free energy is that the first-order transition occurs even from

metal to metal when the bandwidth is controlled in the region |δ| < δw below Tcd, if this

density region can be realized.

By taking ν = νm and eliminating ν, the free energy is expressed by the single parameter

δ as

F =
1

2
Ah(T − Tch)δ2 +

1

4
Bhδ4 + C, (8)

where

Ah = Ah0 −
AdBhd

Bd
, (9)

Tch =
1

Ah
(Ah0Tch0 −

AdBhdTcd

Bd
) (10)

and

Bh = Bh0 −
B2

hd

Bd
(11)

for |δ| ≤ δw, while νm = 0 leads to Ah = Ah0, Tch = Tch0 and Bh = Bh0 for |δ| > δw. Here

C is a constant. This free energy form requires Bh to be a positive constant. This mean-

field expansion is justified only near T = Tcd and ν = νs, while the degeneracy structure is

qualitatively correct along the first-order line below Tcd.

3.2 Bandwidth-Control Transition

Below Tcd at δ = 0, the first-order transition occurs through the jump of ν from −νm to

νm. At Tcd, the “doublon susceptibility” defined by χd ≡ [∂2F/∂ν2]−1 diverges, which means

that electron-hole or excitonic density fluctuation diverges. The mean-field exponent is given

by χd = (T−Tcd)
−γd with γd = 1 and χd ∝ ν−ζd with ζd = 2. The correct exponents within the

classical Ising universality is given by γd = 7/4 and ζd = 14 in two dimensions and γd ∼ 1.24

and ζd = 3.8 in three dimensions.15 At T = 0, the first-order bandwidth-control transition at

U = Uc is connected to the first-order line by putting T = 0 in Eq.(6). Namely, the jump of

ν at U = Uc and T = 0 is ∆ν = 2
√

AdTcd/Bd, although the quantitative aspect of the GL

expansion becomes questionable if ∆ν is not small.

3.3 Filling-Control Transition

When the filling is controlled, the charge susceptibility defined by χc ≡ dn/dµ =

[∂2F/∂δ2]−1 diverges at the critical point T = Tch.

The filling-control transition occurs at U > Uc, where the free energy can be expanded
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around the minimum −νm representing the Mott insulator for ν. Since ν does not have criti-

cality away from Uc, the free energy can be expanded solely by δ after eliminating ν. Then the

free energy has essentially the same form as eq.(8). The critical exponents are the same as the

case of the bandwidth control. Namely, we obtain the mean-field exponent χc = (T − Tch)−γc

with γc = 1 and χc ∝ ν−ζc with ζc = 2, while the correct exponents within the classical Ising

universality is given by γc = 7/4 and ζc = 14 in two dimensions and γc ∼ 1.24 and ζc = 3.8 in

three dimensions.

Below T = Tch, the phase separation generates a miscibility gap in the density, where

the regions of the spinodal decomposition and nucleation are contained. The phase separation

occurs because the total particle density is conserved. However, the phase separation has a

subtlety because the electrons have charge. The real macroscopic phase separation should

be suppressed because of the long-ranged part of the Coulomb interaction, which is beyond

the scope of the Hubbard model. In both the nucleation and spinodal regions, the real phase

separation is suppressed and may be frozen at a nanoscale regime of the phase separation as

if it is frozen at a nonequilibrium state in neutral systems. A related attempt has been made

for micro phase separation of weakly charged polymer.13,56 Nucleation and spinodal regions

may show distinct frozen patterns. In the spinodal region, typical entangled stripped pattern

at an early stage of the spinodal decomposition is expected to freeze while droplet-like pattern

may be seen in the nucleation region. In the nucleation region, the phase separation would be

completely suppressed when the critical nuclei radius is larger than the radius allowed from

the electrostatic condition. However, if the inhomogeneity in the momentum space occurs

as we discuss later, the suppression by the long-ranged Coulomb force may be relaxed to

some extent by the formation of inhomogeneous Fermi surface structure. A classification of

filling-control Mott transition is possible with the criterion of Tch > 0 or formally Tch ≤ 0.14

3.4 Mott Transition and Gas-Liquid Transition, Origin of Attraction

If the transition between the Mott insulator and metals occur through the mechanism

similar to the gas-liquid transition or the binary alloy transition, the above phenomenological

and classical GL free energy should capture the essence. In the gas-liquid-type transition, the

presence of the attractive interaction of particles is known to be crucial. In fact, the liquid

phase does not exist without the attractive interaction. When the particle-particle interaction

is attractive, we have a negative coefficient for the n2 term of the free-energy expansion with

respect to the density n in Eq.(1). This results in the negative curvature in the free energy

as a function of n and this necessarily causes the phase separation (or two-phase coexistence)

and the first-order transition, because the negative curvature (convex curve) makes it possible

to draw a common tangent between two phase-separated densities.

In case of the transition to the band insulator, the carrier interaction is primarily repulsive

and the picture of the gas-liquid transition does not apply straightforwardly. On the other
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hand, the Mott insulator and charge order has a stability because of the commensurability

effect of the electrons with underlying periodic lattice. This commensurability extraordinarily

lowers the energy of the insulating phase as compared to the metallic phase. This lowering

makes the kink structure for the energy at commensurate fillings as a function of the filling.

The question whether the attractive interaction exists or not as in the classical liquid phase

is a highly nontrivial issue.

However, in case of the bandwidth-control transition, the existence of the attractive inter-

action is rather obvious. The Mott insulating phase is characterized by the doubly occupied

site (doublon) and the empty site (holon) forming the bound state while the metallic phase

is characterized by the unbinding of the doublon and the holon.1 The attractive interaction

of a doublon and a holon clearly exists if U is large, because the single doublon and holon

approximately cost the energy 2U while the cost vanishes when they annihilate in pair. The

attractive interaction Eb is 2U if the kinetic energy is ignored, and can be substantially less

if the kinetic energy effect is considered. Then the term proportional to ndnh has a negative

coefficient in the free energy at T = 0. If the filling is fixed at half filling, we have a constraint

nd = nh. After the transformation of the variables from nd and nh to ν and δ, the negative

curvature of the free energy as a function of ν appears under the constraint of δ = 0. This

yields AdTcd = Eb. If quantum effects can be ignored, the critical point thus obtained at

T = Tcd represents the classical Ising nature of the transition.

The doublon-holon attractive interaction is enlarged by a stronger antiferromagnetic cor-

relation because the doublon and holon disturb the antiferromagnetic background and the

energy is lowered if they less disturb by the binding. The order of the transition should be

determined from the ratio of the holon-doublon interaction to the formation energy of the

holon or doublon, which is basically scaled by U . This is reminiscent of the conversion of the

Berezinsky-Kosterlitz-Thouless tansition of the continuous type to the first-order transition

when the vortex core energy is reduced relative to the vortex-antivortex attraction.16 Weaker

first-order transition observed for larger geometrical frustration in a numerical study17 of the

Hubbard model on an anisotropic triangular lattice shown in Fig. 1B is explained from the

weaker doublon-holon attraction because of the weaker antiferromagnetic background.

In case of the filling-control transition, it is much more subtle as we further discuss later.

The filling-control transition is realized by controlling the doping concentration, δc or δ. The

interaction between two holons is a nontrivial issue and should be quite different from the

doublon-holon interaction. As we mentioned above, the stability of the Mott insulator is

ascribed to the fact that the electron filling is one per lattice site, which is lost if the filling

deviates from the Mott insulator. The energy at half filling is extraordinarily lowered due to

the commensurability. If the states deviating from half filling remain uncorrelated metal, it

necessarily causes a jump of the energy because of the loss of the energy due to the U term, and
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[B][A]

t'

t

t'

t

Fig. 1. Lattice structure of geometrically frustrated lattices [A] on a square lattice and [B] on an

anisotropic triangular lattice. The nearest- and next-nearest-neighbor transfers are denoted by t

(solid bonds) and t′ (dashed bonds), respectively.

it trivially leads to the phase separation if the filling deviates from commensurate filling. This

means the attractive holon-holon interaction. In the underdoped region, the real metallic state

is realized by compromising the correlation effect, and the energy in this region becomes much

lower than that calculated from the free fermion state. Then the jump in energy as a function

of the filling is transformed to a continuous function with a kink and the negative curveture

is much reduced or even may vanish. The origin of the attractive holon-holon interaction,

however, if it exists, ultimately traces back to this commensurability force. In any case, at

least the holon-holon attractive interaction should be much weaker than the doublon-holon

attraction, which explains the continuous character of the filling-control transition.

The present observation suggests that the attractive interaction of holons or holons and

doublons may be controlled to some extent. By this control, it may be possible to drive the

system to the quantum criticality. At the quantum criticality, the critical end point of the

first-order transition (or phase separation) occurs just at zero temperature.

4. Comparison with Numerical and Experimental Results

4.1 Numerical Results

The insight from the GL expansion can be further analyzed with the help of recent numer-

ical results of the Hubbard model. In case of the bandwidth-control transition, the dynamical

mean-field theory of the Hubbard model indicates that the transition is of the first order below

a finite critical temperature. The critical point is, moreover, characterized by the mean field

exponent of the Ising transition.9,10 Therefore, the GL mean-field picture seems to apply as

the mean-field picture of the Mott transition.

In the two-dimensional Hubbard model, the path-integral renormalization group (PIRG)

study18,19 clearly shows that the first-order transition is retained in two dimensions with

a jump of the double occupancy nd at T = 0.17,20 Such bandwidth-control transitions in

two dimensions are realized by introducing next-nearest neighbor transfers in addition to the

nearest-neighbor transfer in the Hubbard model as is illustrated in Fig. 1. The correlator
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projection method,21 in which the momentum dependence of the self-energy is taken into

account in the dynamical mean-field theory, also consistently shows the first-order transition

with a jump of the double occupancy and the finite temperature critical point in the same

model.21 As is mentioned above, the first-order transition for the bandwidth control is a

natural consequence of strong doublon-holon attraction. The first-order jump decreases with

the decrease in the antiferromagnetic correlation by introducing frustration effects. This is

also consistent with the picture in the previous section.

In case of the filling-control transition, the numerical results suggest that the order of the

transition is more subtle in accordance with the analysis in the previous section. The dynamical

mean-field theory appears to show a presumable phase separation (only in the region of very

small doping less than 1%) at finite temperature while the single-band model calculation shows

the continuous transition at T = 0. A small overestimate of the holon-holon interaction by

some approximation easily alters the transition from continuous to the first order because an

infinitesimally small overestimate transforms the diverging charge susceptibility at δ = δs = 0

to that at a nonzero δ and leads to the phase separation. This issue will be discussed later. It

is well known that the mean-field theory may have a tendency to give a fictitious first-order

transition because of the ignorance of the fluctuation effects near the transition. Small cluster

studies on two-dimensional lattice appeared to show a phase separation,22 but it turned out

to be an artifact and result from overlooking the shell effect seen in the finite size clusters.23,24

In the quantum Monte Carlo23–25 and PIRG26 studies on the two-dimensional lattices, the

charge susceptibility divergence appears to occur at zero temperature at the transition point

δ = δc = 0. The divergence occurs as χc ∝ δ−1. The diverging charge susceptibility at T = 0

in fact means that Tch = 0 is just satisfied in Eq.(8). This does not exclude very small but

nonzero Tch and a small region of the phase separation if it is beyond the numerical accuracy.

In addition, the diverging charge susceptibility at δ = 0 suggests that the critical temperature

could be easily driven to a small but positive and nonzero value depending on the models,

approximations and dimensionality. At least within the Hubbard model, however, the filling-

control transition in finite dimensional systems shows no evidence for the phase separation

within the numerical accuracy. Instead the filling-control transition in two dimensions shows

continuous character with diverging compressibility at vanishing doping concentration δ. The

numerical results indicate a general agreement that the bandwidth-control transition is of the

first order while the filling-control transition shows a continuous nature with Tc being nearly

vanishing.

Recently, it has been clarified that this contrasted behavior between bandwidth-control

and filling-control transitions is consistent with the peculiar V-shape structure of the phase

boundary between the Mott insulator and metal in the plane of U/t and the chemical poten-

tial.26
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4.2 Comparison with Experimental Results

In strongly correlated electron systems as in transition metal oxides and organic com-

pounds, particularly near their Mott insulating phases, various competing orders and their

fluctuations are universally observed and the subject of intensive studies in the recent two

decades.1 We will clarify later that such severe competitions at least partially originate from

the tendency toward the underlying criticality of the Mott transition mentioned above. To

understand the striking complexity of these competing orders and their fluctuations as com-

pared to weakly correlated systems, it is important to understand the underlying mechanism

and physics of the criticality.

Very recently the first-order Mott transition with a critical point at nonzero T in V2O3 has

been reanalyzed in detail.27 This bandwidth-control transition is consistent with the above

GL expansion and numerical results.

In addition to enormous number of studies in transition metal compounds, we note two

interesting recent experimental studies, one on the organic compounds and the other on the

adsorbed monolayer 3He on graphite.28,29 Fournier et al.30 and Kagawa et al.31 have shown

that a first-order transition between the Mott insulator and a metal (at low temperatures,

a superconductor) takes place in an organic material, κ−ET compound, and its first-order

boundary starting from zero temperature extends up to the critical end point at around 34K

in the plane of pressure and temperature. In this study, the pressure controls the relative

bandwidth to the interaction strength while the electron filling is fixed, and therefore, a

bandwidth-control transition is realized. In fact, according to the extended Hückel calculation

for κ-type ET compound,32 a minimal model may be the single-band Hubbard model at half

filling on an anisotropic triangular lattice defined in Eq.(2) on the lattice structure given in

Fig. 1[B]. As we already discussed in the previous subsection, this first-order transition with

the critical end point was predicted17,21 for this lattice structure of the Hubbard model before

these experiments.

On the other hand, the 3He monolayer adsorbed on graphite substrate shows a typical

filling-control transition to the Mott insulating state by changing the 3He density. The Mott

insulating state is realized at the commensurate density with the periodic potential formed

by the underlying layer. When the density approaches the Mott insulating state in the liquid

phase, it shows striking increase and critical divergence of the effective mass probed by the

specific heat coefficient and the magnetic susceptibility.28,29 The liquid phase nicely obeys

the Fermi liquid criterion. Although a possible weak first-order character (namely phase co-

existence or phase separation) cannot be excluded, this critical divergence implies the basic

continuous character of the filling-control transition in contrast with the bandwidth-control

transition observed in the organic compounds.

Of course, it is questionable that the 3He system can be described by the Hubbard model
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and more realistic model with hard-core repulsion should be examined for a quantitative

analysis. It is also conceivable that the order of the transition may depend on the relevant

model as we mentioned above. However, it is also important to realize that the continuous-type

transition for the filling control can occur with a critical divergence of fluctuations.

These two different experiments performed on relatively clean and simple systems as

compared to transition metal oxides show a similar contrast between bandwidth-control and

filling-control transitions to numerical studies which we mentioned above.

5. Quantum Effect

5.1 Mott Transition at T=0

Insulators are characterized by vanishing conductivity at zero temperature. Among various

types of insulators, band insulators and Mott insulators are both distinguished from metals by

vanishing Drude weight and vanishing charge susceptibility (compressibility) at zero tempera-

ture.1 As compared with phase transitions with symmetry breakings such as magnetic orders,

the transitions from metals to the band insulators and the Mott insulators have been consid-

ered to be associated with no symmetry breaking by themselves. However, the Drude weight

and the charge susceptibility are regarded as the stiffnesses to twisted boundary conditions of

the wavefunction phases.1,33, 34 The Drude weight is the stiffness to the twist of the phase of

the wavefunction in the spatial direction, while the charge susceptibility is the stiffness to the

temporal direction in the path-integral formalism. In this sense, metals in a perfect crystal

may be interpreted by the symmetry breaking of the phase of the spatially extended electron’s

wavefunction as compared to the localized and incoherent wavefunction in the insulator. At

zero temperature, insulators cannot be adiabatically continued to a metal and the distinction

of metals and insulators is well defined. Then two phases have to be clearly separated by

a phase boundary. On the other hand, such distinction is not clear at finite temperatures,

because, strictly speaking, the wavefunction coherence is immediately destroyed away from

T = 0.

5.2 Coexistence with Fermi Degeneracy

The Mott transition discussed so far from the GL mean-field picture is essentially described

as a classical one by ignoring quantum effects. The first-order metal-insulator transition can

occur even without quantum degeneracy. If the Fermi degeneracy temperature near the first-

order transition is much lower than the critical temperature Tch or Tcd, the quantum effects

can be ignored. In the opposite case, however, the quantum effects must be considered beyond

the above framework. The quantum effects have to be seriously considered when the Fermi

degeneracy temperature becomes comparable or higher than the critical temperature of the

Mott transition. Even when the bare Fermi temperature is high, the effective Fermi tempera-

ture is suppressed near the Mott critical point because approaching the continuous transition

12/28



J. Phys. Soc. Jpn. Full Paper

to the insulator should suppress the emergence of the Fermi degeneracy. However, the Fermi

degeneracy may still coexist with the critical fluctuation in the metallic side near Tc. This

should be particularly eminent when Tc is suppressed to zero.

In the Ising-transition picture,15 the charge susceptibility χc diverges at the critical tem-

perature as χc ∝ (T − Tc)
−γ and χc ∝ δ−ζ with the exponents γ and ζ given above. The

transition is characterized by these simple exponents with the hyperscaling assumption being

satisfied below the upper critical dimension du = 4. The system has a single length scale ξ

which diverges at T = Tc. In the present context, ξ expresses the density correlation length

or doublon density correlation length.

In the quantum region, however, we have to consider quantum dynamics. This can be

done by considering the path-integral formalism, where the imaginary time direction must be

additionally considered in addition to the real spatial dimension. The time scale ω−1 diverges

as ω−1 ∝ ξ−z in addition to the divergence of the spatial correlation length ξ. The quantum

dynamics is characterized by the dynamical exponent z.

In the mean-field level, the local quantum effect can be taken into account by the dy-

namical mean-field theory. The critical point of the metal-insulator transition is signalled by

∂2F/∂∆2 = 0, where the hybridization function ∆ is the conjugate variable to the single-

particle local Green function G and defined from ∆ = ∂F/∂G.

As mentioned above, however, the mean-field theory may overestimate the tendency to the

first-order transition, which may mask the quantum effects because of a resultant high critical

temperature. The order of the transition and the amplitude of the critical temperature may

depend on the details of models, and materials. When the critical temperature Tc is high, as we

mentioned, the Mott transition is essentially classical and the mapping to the Ising transition

holds. One can suppress Tc by controlling a parameter through the interaction of holons (or

holons and doublons). This corresponds to control Tch or Tcd to zero. One might think that the

critical temperature could become formally negative when one controls the parameter further.

This literally means that in the GL expansion of Eqs.(6) and (8), the metal-insulator transition

disappears in this region. However, this cannot happen because metals and insulators have

to be clearly separated at zero temperature and the phase boundary cannot terminate as we

have mentioned above. This necessarily leads to the breakdown of the classical GL expansion

or in other words, the transition always exists and the critical temperature stays just at

zero temperature through the further parameter control. As we see in Fig.2, this generates a

Tc = 0 line, where the transition would be far from the gas-liquid picture and the transition

stays as the continuous quantum phase transition. In this sense, this quantum criticality

is different from the conventional quantum critical point. In the conventional case with a

symmetry breaking at finite temperatures, the continuous critical point at T 6= 0 terminates

at the quantum critical point without first-order transitions and without a Tc = 0 line. In the
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Fig. 2. Schematic phase diagram of metals and insulators in the plane of a control parameter ζ

such as U or µ, and g, which additionally controls the interactions of holons and doublons. The

continuous transition curve Tc meets zero temperature at the solid circle and then Tc stays at

zero with further decrease in g. We call the solid circle point marginal quantum critical point. The

shaded surface represents the first-order transition. Along the Tc = 0 curve, the coefficient of the

quadratic dispersion, a, vanishes in the solid part, while it remains positive in the dashed part.

Thus the compressibility diverges in the solid part of the Tc curve. We call the region between the

cross point and the solid circle (the marginal quantum critical point), marginal quantum critical

region.

present case, at T = 0, the Tc = 0 line terminates at marginal quantum critical point, where

the surface of the first-order transition starts opening with the nonzero critical temperature

for the larger g. Hereafter, our focus is largely on the nature around this marginal quantum

critical point.

Here, we discuss how the quantum effect alters the transition by assuming the region that

the critical temperature is low or even zero. This corresponds to the region of vanishing ef-

fective interaction for holon or doublon in the GL expansion. When the critical temperature

becomes low, the GL expansion tells that the charge fluctuation becomes diverging accom-

panied by the quantum degeneracy, which becomes beyond the scope of the form (6) and

(8) . The numerical results of the filling-control transition in two dimensions discussed above

indeed suggest a continuous transition at zero temperature with the diverging charge suscep-

tibility, which is consistent with Tch = 0 and vanishing effective interaction between holons.

Therefore, this is certainly a realistic possibility.
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5.3 Phenomenological Construction

Here we formulate a phenomenological theory of the Mott transition in the quantum

region. When the path integral formalism with the imaginary time τ is employed, the free

energy is formally expressed by using the Hubbard model as

F = −lnZ/βN (12)

Z =

∫

∏

i

Dφi(τ)Dφ∗
i (τ)e−S/~, (13)

S =

∫ β~

0
dτ

∑

i

φ∗
i ~∂τφi +

∫ β~

0
dτH(φ∗, φ), (14)

(15)

where the Hubbard hamiltonian H for N site system is rewritten by using the Grassmann

variables φi and φ∗
i at the site i.

In the metallic phase except in one dimension, the adiabatic continuity of the Fermi

liquid allows the description of the free energy by the renormalized single particle at low

energies, where the higher-order terms are renormalized to the single-particle coefficient. In

the insulating side, the action may also be given from a quasiparticle description with a gap

∆c as

S =
∑

i,n

φ∗(−iωn + ∆c + E(q, k))φ (16)

with the Matsubara frequency ωn, and E(q, k) is assumed to satisfy E(q, k) ≥ 0 and vanishes

at the gap edge. Around the gap edge, we take the expansion in terms of k as

E(q, k) = a(q)k2 + b(q)k4 + ....., (17)

where k is the momentum coordinate perpendicular to the locus of E(q, k) = 0 and q denotes

that parallel to the E(q, k) = 0 surface. The gap edge is not necessarily an isolated point in

the momentum space, but may be a line or a surface. Just at the transition point, ∆c vanishes.

The coefficients a and b are regarded as renormalized values after the renormalization

group treatment of the higher order terms in the expansion with respect to φ. In the presence

of the a term, the dynamical exponent z characterized by the dispersion is given by z = 2

as in the usual transition to the band insulator.35 For example in case of the filling-control

transition, at T = 0, the singular part of the free energy is expanded in terms of the density

as F = δ(d+z)/d as we see later, while the form Eq.(8) is justified at T > 0. However, the

hyperscaling assumption is still satisfied35 at T = 0. The transition between the band insulator

and metals may also be interpreted from Eq.(8) that Tch is kept formally negative for spatial

dimensions d ≥ 2 at T > 0, while the singular form beyond Eq.(8) appears only at T = 0 as

F = δ(d+2)/d.

In this formalism, the attractive holon-holon (or holon-doublon) interaction should be
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renormalized and result in the flat dispersion in Eq.(17) at least in a part of the Brillouin

zone when the phase separation or the first-order transition starts, because the localization by

the phase separation (or diverging doublon susceptibility) should give the vanishing dispersion.

In other words, the coexisting phase or phase separation region is characterized by the region

of diverging charge susceptibility or doublon susceptibility, which have to generate a diverging

density of states at the gap edge in spatial dimension d ≥ 2. This necessarily leads to a →
0. Toward the marginal quantum critical point, the real part of the lowest order term a

continuously vanishes. This alters the dynamical exponent from 2 to 4, because the quadratic

term proportional to a vanishes and quartic term proportional to b still remains in general.

We note that in the GL description, this marginal behavior with z = 4 is realized at the

critical point, Tch or Tcd. Strictly speaking, however, this argument is justified when the

Fermi degeneracy is well developed and the quasiparticle description in the form (16) is valid.

This is satisfied around the marginal quantum critical point.

Although the quasi-particle picture does not hold, it has numerically been shown that

the dynamical exponent indeed becomes z = 4 at the marginal quantum critical point in the

one-dimensional Hubbard model with next-nearest-neighbor transfers37

If the gap edge given by E(q, k) = 0 is composed of a line or a surface in the momentum

space, the value a in reality depends on the momentum along this line or surface. When the

system is metallized, this line or surface is expected to become the Fermi surface which satisfies

the contained Luttinger volume. Generically, the parameter a depends on the momentum.

Therefore, when the parameter is controlled to the critical point, it is unlikely that a vanishes

simultaneously at all the points along the E(q, k) = 0 surface in the metallic side. On the

contrary, generically the point with the smallest amplitude of a becomes zero first as a special

point of the E = 0 surface. Then a quartic dispersion appears at this special point of the

E = 0 surface when the system becomes marginal, which results in z = 4. Therefore, the

Mott critical point is also characterized by the evolution of an electron differentiation if the

large Fermi surface is involved in the metallic side. The singular differentiation generates a

quartic dispersion at particular points of the Fermi surface coexisting with dispersive generic

part.

This large dynamical exponent z = 4 is indeed supported in a number of independent

numerical calculations for the filling-control transition of the Hubbard model in two dimensions

at T = 0,23,24, 36, 38–41 which suggests that Tch is zero or very small in this case.

We now consider the filling-control transition in more detail. In the quantum region, the

expansion in the form (6) and (8) is not justified any more. However, the singular part of the

free energy may still in principle be expanded at zero temperature as a function of the doping

concentration δ. When the quadratic part of the dispersion proportional to a around a point

q1 in eq.(17) remains, the lowest order term of the total energy measured from the insulator
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in this quasiparticle picture is given at T = 0 from

F = Caδ(d+2)/d (18)

with a constant C and therefore the charge susceptibility shows the scaling χc ≡
(∂2F/∂δ2)−1 ∝ δ1−2/d, which is the same as the transition to the band insulator. This is

because

F ∝
∫ kF

0
kd−1k2dk (19)

and

δ ∝
∫ kF

0
kd−1dk, (20)

where we have integrated around q1. If a large Fermi surface which satisfies the Luttinger

theorem appears immediately upon doping, one has to take that Fermi surface as the locus

E(q, k) = 0 and one gets

F = Cδ3 (21)

because

F ∝
∫ kF

0
k2dk (22)

and

δ ∝
∫ kF

0
dk, (23)

where the integrations are performed in the region around the locus E = 0. However, in the

marginal region near the marginal critical point with vanishing a term at particular points

q0, we have the lowest order term

F = Cbδ(d+z)/d, (24)

with z = 4, which yields

χc ∝ δ1−z/d. (25)

The free energy near the Fermi ground state is therefore expressed as

F = C(aδ(d+2)/d + bδ(d+4)/d), (26)

Even in the case of the bandwidth-control transition, when one can regard the closing

of the gap by hole doping around a point q0h and simultaneous particle doping around q0p

with the constraint of keeping the electron density n = 1, the above relation Eq.(26) may be

replaced with ν as

F = aν(d+2)/d + bν(d+4)/d, (27)

because the “doublon” and “holon” concentration is nothing but the above self-doping con-

centration of particles and holes. However, the validity of this picture is limited because the
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large Fermi surface which satisfies the Luttinger theorem does not appear in this way. In fact,

the bandwidth-control transition seems to occur as the first-order transition at T = 0 and the

critical behavior may not exist.

A crucial point is that, at the marginal quantum critical point, the diverging charge

susceptibility (or doublon susceptibility) driven by z = 4 in the Fermi-degenerate region

causes a multifurcating criticality as we discuss later. This instability is much stronger in

the lower dimensions than in three dimensions as we see from Eq.(25). In two dimensions,

χc ∝ δ−1, while χc ∝ δ−1/3 in three dimensions.

6. Two-Fluid Model

Near the critical point of the Mott transition, a(q) ≥ 0 has momentum dependence along

the locus E(q, k) = 0 and the marginal critical region is characterized by the vanishing a(q)

at particular points of the locus. If it happens, the Fermi surface roughly consists of the two

parts in the metallic side. One is the part where a(q) shows rather large value, while the other

is particular points where a(q) gets smaller and smaller around such particular points q = q0

as a(q) = a0ε + (q − q0)
2, where ε measures the distance from the critical point in the control

parameter, say g. The contribution around the points q1 where a1 = a(q1) is large gives the

ground state energy as

F = a1ζ
(d+2)/d, (28)

where ζ is either δ or ν depending on the filling or bandwidth control. The contribution from

the area around q0 is

F = a0εζ
(d+2)/d + bζ(d+4)/d. (29)

When the filling is controlled from a heavily doped region toward the marginal quantum

critical point, there exists a crossover from the normal behavior, where the free enrgy is

insensitive to δ, to the critical proximity region, where

F = bδ(d+4)/d. (30)

In the normal region, the specific heat has a normal γ value, which is essentially δ insen-

sitive. The specific heat may have a broad peak around a normal effective Fermi energy.

With the decreasing doping concentration, this high-temperature weight is transferred to the

low-temperature region, where the critical proximity from Eq.(30) yields a quite different γ

value. In this low-temperature structure, the T -linear behavior becomes limited to lower and

lower temperatures with decreasing doping concentration. When a0 vanishes, γ diverges as

γ ∝ 1/(a0ε) while this T -linear behavior holds only in the region proportional to a0εδ
2/d+bδ4/d

because the effective Fermi energy is scaled in this way. This low-temperature structure may

continuously merge to the bahavior of the insulating phase, where the specific heat is deter-

mined from the spin entropy only and may have a peak structure at a characteristic spin-
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exchange energy. In fact, this spin entropy contribution persists in the doped region and the

region of the linear-T specific heat should be limited to the lower energy than the peak of the

spin contribution, when the doping concentration is low enough.

Upon approaching the Mott critical point, the dispersion around q0 becomes flatter and

flatter and the damping effect may also become large. In addition, scattering of quasiparticles

in this momentum region may be responsible for the spin correlation in the insulating phase.

This flattness is the origin of the charge susceptibility divergence in Eq.(25). Although the

doped carriers are largely accepted in this region upon doping because of the flattness, the

quasiparticle structure may not be clear because of the damping. On the contrary, other part

of the Fermi surface with dispersive quasiparticles accepts lower concentration of carriers

while it shows more coherent quasiparticle structure. Because of this electron differentiation

depending on the momentum on the Fermi surface, the DC transport contributed from the

dispersive region and the spin dynamics mainly arising from the flat region may behave as if

they are separately evolving. This is reminiscent of the phenomenological argument of “hot”

and “cold” spots42 in the high-Tc cuprates.

When Tc becomes positive, the phase separation starts at T < Tc. This phase separation

starts from this flat region of the Fermi surface, while it can coexist with the metallic carriers

in the dispersive region, if the carriers are also doped in the dispersive region. If carriers are

not doped into the dispersive part, the phase separation must be frozen at an early stage

of the spinodal decomposition or the nucleation, because the long-ranged Coulomb repulsion

prohibits further evolution of the phase separation. When the holes are doped also into the

dispersive part in addition to the flat part, the screening by the dispersive carriers may

relax the constraint from the Coulomb repulsion. The characteristic frozen domain size ξ is

ξ ∼
√

ǫ∆E/(δ0e), where δ0 is the density difference between two phase separated area, ∆E

is the free energy barrier between two minima, and ǫ is the effective dielectric constant. The

coexistence with the dispersive carrier increases ǫ through screening effects. In a region of the

patched real space, the carriers from the flat dispersion region are more dense and in the other

region, coherent carriers from the dispersive region are more densely populated.

The two-fluid model is a simplified picture for the coexistence of the dispersive and flat

regions near the Mott critical point. For more quantitative analyses, one has to consider the

multi-fluid model that contains more than two components because the flat and dispersive

regions are continuously interpolated.

7. Multi-furcation Instability

Near the marginal quantum critical point Tch = 0, or more precisely in the region of

a = 0, the charge susceptibility diverges at T = 0, while its coexistence with the Fermi

degeneracy generates a drastic effect. If these two coexist, the instabilities to various orders

including magnetic, charge and superconducting phases are undoubtedly largely enhanced as
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compared to the existence of only one. The antiferromagnetism, ferromagnetism, charge order

and the superconducting order severely compete, because all of them easily diverge because

of enhanced density of states arising from the proximity to the diverging charge susceptibility.

The susceptibility at T = 0 for the order parameter u is given by

χu =

∫

dEρ(E)
|〈0|u†|ϕE〉|2

E − ω
, (31)

which diverges because of the diverging density of states. Here, |ϕE〉 is the eigenstate with the

energy E, |0〉 is the ground state and ρ(E) is the density of states. The above orders are also

competing with the tendency towards the phase separation. It turns out that such instability

is enhanced in spatial dimensions lower than three because of Eq.(25), namely χc ∝ δ1−4/d.

Because the symmetry breaking is severely suppressed in one dimension, the systems with

strong two-dimensional anisotropy with weak three-dimensional coupling may have the most

drastic and largest energy scale of the severe competitions and instabilities.

Near the Mott critical point, the instability towards various symmetry breakings occurs

mainly at the particular points p0 with the flattened dispersion. The amplitude of the instabil-

ity for different orders sensitively depends on the details of the lattice structure, Fermi surface

shape and band structure, because the position of p0 may depend on details of systems. We

do not discuss individual differences of instabilities depending on the detailed distinction of

systems. An important point is that such multi-furcating instability generically starts devel-

oping and very sensitive dependence of fluctuation enhancement appears when the system

approaches the marginal quantum critical point of the Mott transition. At least the diversity

and complexity of the phenomena in experiments in this region1 are understood from the

underlying combination of the Fermi degeneracy and the compressibility divergence caused by

a unique quantum criticality of the Mott transition.

It is certainly possible that, under critical charge fluctuations of the Mott transition, some

symmetry breaking occurs at finite temperatures before the real Mott critical point is reached.

For example, the antiferromagnetic order or superconducting order may appear before the

real Mott critical point. In this case, the transition to the Mott insulator occurs from such

symmetry broken states and then the transition is ultimately rather analogous to the transition

to the band insulator at T = 0.43,44 For example, the transition between an antiferromagnetic

insulator and an antiferromagnetic metal show similar behavior with the transition to the

band insulator, because the folded Brillouin zone generated by the antiferromagnetic order

yields the vanishing Fermi pocket at the metal-insulator transition point. Such transitions

between the symmetry broken phases are characterized by the vanishing number of carriers

with a noncritical effective effective mass. Instead, if the symmetry breaking does not occur,

the real Mott criticality can be observed at T = Tc and the diverging charge fluctuations

cannnot be described by a mapping to a transition to the band insulator. Thus a classification
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scheme of two different types of transitions to the Mott insulators is useful.43,44 One is the

case with the Mott critical point observable and in the other, the critical point is masked by

the symmetry breaking transition induced by the Mott criticality.

In this context of multi-furcation, instabilities of the metals near the Mott insulator have

been examined from various standpoints, although the fundamental and unique structure of

the Mott criticality with the divergent κ has not necessarily been fully considered. In fact, the

controversies1 in the literature all indicate that the stable phase near the Mott insulator very

sensitively depends on models and approximations. The divergent κ as δ → 0 easily induces

a real phase separation if a small hole-hole attraction is induced either by a real additional

perturbation or by an artifact of the approximation. This means that Tch may be controlled

to a substantially positive value if some additional interaction can be generated. Then the

phase separation can occur even at the classical level without the Fermi degeneracy. This

may happen, for example, when the antiferromagnetic order is overestimated than the real

one because it introduces an additional attraction of holes by hand. A similar situation may

appear when one takes the t-J model with a rather large J . The interaction of the holons

should be determined in a self-consistent fashion with very subtle balance in the realistic

electronic structure near half filling while the J term controlled by hand very easily destroys

this requirement.

A more intriguing possibility among the candidates of the furcation is the superconduc-

tivity, where the coexistence of the quantum degeneracy is crucially important. There exist a

large number of works on the possibility of superconducting phase without paying full atten-

tion on the unique character of the Mott transition discussed in this paper. Among them we

briefly discuss some of the studies in relation to the present scope. The enhancement of the

d-wave superconducting correlations are signaled by tuning the level structure near the Fermi

surface in numerical studies,45 which also suggests that the pairing is sensitively enhanced by

emphasizing the degeneracy near the Fermi level. The FLEX studies46 show an enhanced pair-

ing induced by the effective attractive interaction coming from enhanced and overestimated

antiferromagnetic fluctuations. The stabilization of the superconducting phase is also shown

by taking a relatively large J in the t-J model in variational or mean-field studies.47 The J

term in the t-J model explicitly enhances an attraction of two singlet electrons by hand, while

an overestimate of the role of the antiferromagnetic correlations may also overestimate the

stability of superconductivity.

The stabilization of the superconducting state is also seen by taking a small additional

perturbation of correlated hopping in numerically well controlled calculations.48,49 The corre-

lated hopping term is in fact derived in the strong-coupling expansion of multi-band systems

and can be significant because of the enhanced compressibility near the Mott transition.39,50

This superconductivity is driven by the kinetic energy gain, which is entirely different from

21/28



J. Phys. Soc. Jpn. Full Paper

the BCS mechanism.50 The kinetic energy gain arises because the quantum Mott criticality

suppresses the kinetic energy of single particle through z = 4. The attractive interaction of two

pairs, each propagating coherently, is much reduced as compared to the attractive interaction

of two holes, each coming from q0 and −q0. In other words, the marginal quantum critical

region for paired electrons shifts from that of single particle so that the Tc = 0 line extends for

paired electrons than for unpaired electrons. Because of this shift, the dispersion of pairs is not

severely suppressed as compared with the single-particle dispersion. An extreme sensitivity

toward the superconducting instability may in reality be again a consequence of the diverging

density of states near the Mott insulator. In fact, when the effective interaction of the mobile

holes becomes attractive, it is very natural to have a stabilization of the superconducting

phase before the real phase separation (or spatial inhomogeneity) takes place when the Fermi

degeneracy coexists. The kinetic pairing mechanism is expressed by the following effective

Hamiltonian:

H =
∑

q,σ

E1(q)c
†
qσcqσ +

∑

q

E2(q)∆(q)†∆(q) (32)

with the pairing order parameter ∆(q) = f(q)cq↑c−q↓. In (32), E1(q) has vanishing dispersion

around q0 only with the quartic term as E1(q) = (q−q0)
4, while E2(q) has a normal dispersion

with the quadratic term. This drives the pairing of this form. The form factor f should

be chosen so that the dispersion E2(q) becomes the largest. Because of this two-particle

dispersion, dispersive pairing states are formed within the single-particle Mott gap.

It should also be noted that if a(q) becomes vanishing at four points, say, q0,−q0, q1 and

−q1 on the Fermi surface in the Brillouin zone, it additionally favors the superconducting

instability by the pairing of

Pq0,q1
= 〈cq0↑c−q0↓ − cq1↑c−q1↓〉, (33)

where the exchange interaction may work as attractive because of the negative phase factor

in (33). This situation indeed occurs in the d-wave pairing realized in the high-Tc cuprates at

around (π, 0) and (0, π).

The analysis in the present paper adds a new insight into the controversies for the determi-

nation of the ground state. Most of the examined instabilities, including magnetic, charge, and

pairing ones, are singularly enhanced by the coexistence of the Fermi degeneracy and the Mott

criticality. All these instabilities induced by a small perturbation or crudeness of the approx-

imation together with their controversies depending on the models and approximations cer-

tainly indicate the significance of underlying “multi-furcating criticality”. The multi-unstable

nature is also tightly connected with unusually suppressed coherence of quasiparticles in the

flat-dispersion region around q0, which is also a consequence of a large dynamical exponent

z = 4 derived in the underlying Mott transition. The system becomes almost unstable to
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various directions in this case of the quantum criticality.

Then we realize that we have to be very careful in concluding which type of the instabilities

eventually wins since calculations suggest a strong degeneracy of various different phases

under quantum fluctuations. As we mentioned, if the critical point is suppressed to lower

and lower temperatures as in the filling-control case, the instability is more enhanced because

of the interplay with the Fermi degeneracy. Near the critical points of the Mott transition,

whichever at Tc = 0 and Tc 6= 0, the electronic state may have strong instabilities and they

even further generate new subsequent instability mediated by enhanced fluctuations. Without

clarifying this subtle multi-furcating instabilities and competitions under the proximity to the

compressibility divergence, the final result at zero temperature would not be reliable.

We again note that the diverging charge susceptibility at the Mott critical point is con-

nected with particular points of the Fermi surface, where the dispersion becomes flat. This

causes the “differentiation” of electrons depending on the position of the Fermi surface. It

should be noted that this differentiation has a positive feedback effect. The region of the

Fermi surface, which has initially relatively stronger correlation effects, due either to the initial

Fermi surface anisotropy or to anisotropic growth of fluctuations, allows stronger and stronger

correlation effects. This positive feedback appears because the dressed and slower quasipati-

cles with stronger damping capture the interaction effects more sensitively and strongly. Such

positive feedback effects have numerically been seen in the flat dispersion around (π, 0) and

(0, π) points near the Fermi surface40 of the Hubbard model and also discussed by the nu-

merical renormalization group.51 The “differentiation” in the momentum space may have a

further possibility of the higher order structure at lower energy level, which results in a typical

complex phenomena with a residual entropy retained.

Moreover, it opens a new field of critical phenomena, where the originally single unstable

fixed point generates “daughters”, namely, a multi-furcation of the subsequent and different

unstable fixed points and the competitions of these fluctuations generate further lower-energy

structure through a transient inhomogeneity in real and momentum space. This is beyond the

conventional scheme of the critical phenomena. In fact, the analogous GL bifurcation point

in the classical system generates simply a diverging susceptibility at the critical temperature,

for example, in the gas-liquid and binary alloy mixture transitions. At the classical level,

this at most generates a nucleation and a spinodal decomposition regimes below the critical

temperature and the physics is rather simple. However, in the case of the Mott transition,

the apparently similar problem turns out to be rich due to the interplay with the Fermi

degeneracy, whose consequence may be regarded as a quantum emergence from the interplay

of these two elements. Under a careful parameter control, an emergence of a complicated

hierarchy is expected with lowering energy after severe competitions of various fluctuations

before the ground state is reached.
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An attempt for searching a more enhanced instability towards such as superconductivity

is also the subject of recent intensive studies, because the instability may depend on details

of the models and a number of degrees of freedom.52,53 Near the Mott critical point, emer-

gence of the flat dispersion around q0 points is a key element when one wishes to design an

enhancement of desired orders, since the emergence of q0 points may be properly controlled

by system parameters. By considering the above viewpoint of new hierarchy generation, this

is a significant issue to be studied further.

We have discussed only for the region near the Mott insulator at half filling of the Hub-

bard model. However, in principle, a similar structure appears near any simple commensurate

fillings of particle density. It is known in many correlated electron systems that the Mott

insulating state called the charge order is universally observed at a simple commensurate fill-

ings such as n = 1/3 and 1/4, while it quantum mechanically melts away from such simple

fractional densities.1 With the long-ranged Coulomb interaction, the melting is also driven by

decreasing m∗/ǫ with m∗ and ǫ being the effective mass and the dielectric constant. With in-

creasing m∗/ǫ, charge orderings are stabilized at more and more complicated fractional fillings

and a structure of the devil’s staircase appears as clarified recently by the PIRG method.54 In

principle, a similar structure with divergent compressibility to the half-filled Mott insulator

considered in this article may appear around each charge ordered states, which generates an-

other complexity and hierarchy structure. The order of the charge order transition may again

be determined from the ratio of the formation energy of the defect structure (charged defects)

to the amplitude of defect-defect interaction. An important difference from the quantum Mott

transition is that the critical point is actually the marginal critical point in case of the charge

order transition. This is because that the charge-order transition necessarily accompanies the

translational symmetry breaking. Therefore, the critical point as the termination point of the

first-order transition must be the end point of the critical line.

8. Insight into High-Tc Cuprates and Other Strongly Correlated Materials

It is useful to discuss the above consequences in relation to the observed experimental

results. Various experimental results suggest that the Mott transitions in many of the tran-

sition metal compounds are rather close to the marginal quantum critical region especially

for the filling-control transition. 3He adsorbed on a substrate also shows a critical behavior of

the mass enhancement when the filling is controlled close to the Mott insulator (or registered

phase).

For the case of the bandwidth-control transition, the κ-ET type organic material30,31

and V2O3
27 beautifully show the existence of the finite temperature critical point with the

first-order transition below it.

For the filling-control transition, in particular high-Tc cuprates show various indications

which are consistent with the present picture. In the high-Tc cuprates, flat dispersions are
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observed near (π, 0) and (0, π) points. It is widely recognized that the flatness is beyond the

conventional expectation from the van Hove singularity. Such flattening is a natural conse-

quence if the Mott critical point at T = Tch is located at low temperatures or at T = 0 with

an emergence of the point q0 with vanishing quadratic dispersion, given by a = 0 as we clari-

fied in the previous sections. The actual q0 positions responsible for the Mott criticality may

depend on materials and models. For example, Y and Bi compounds of the high-Tc cuprates

seem to be well modelled by a larger t′ than La based high-Tc compounds when one takes the

Hubbard model (2).55 Then the singular points q0 may deviate from (π, 0) and (0, π) points

for larger t′. Width of the critical region may be influenced by the amplitude of t′, while

the existence of the criticality itself appears to be universal. In the electron doped cuprates,

the critical behavior does not seem to exist because the doping within the antiferromagnetic

ordered phase is equivalent to the doping into the band insulator.

If the phase separation or spatial inhomogeneity of charge occurs, the critical point of the

diverging compressibility shifts to a finite temperature as the critical termination point of the

phase separation. If this critical temperature is still in the region of the Fermi degeneracy

in the metallic side, the same physics of the multi-furcating criticality we discuss in this

article survives. With the existence of the long-ranged Coulomb force, the phase separation

is of course converted either to the charge order (or stripe) with a finite-length periodicity

or to an inhomogeneity like the quenched and transient spinodal pattern, which has indeed

been observed on the surface of the high-Tc cuprates by the scanning tunnel microscope

spectroscopy(STM and STS).4 The observed spatial pattern of the inhomogeneity on the

surface of the cuprate superconductors is very similar to the spinodal pattern widely observed

in binary alloy systems.56,57 The freezing of the spinodal pattern without the phase separation

may be well explained by the long-ranged Coulomb repulsion.

The tendency for the phase separation is enhanced when itinerant electrons are coupled

to classical degrees of freedom and thus the Mott critical temperature Tc is enhanced. This

happens in perovskite manganites, where the itinerant eg electrons are strongly coupled to

localized t2g degrees of freedom through Hund’s rule coupling.5,6 It also couples to lattice

degrees of freedom.

The experimental results suggest that the stripe or inhomogeneity is actually rather easily

stabilized if a corrugation potential from the lattice distortion or effects of random impurity

potential, easily introduced by the doping, are present. This is again the consequence of

the “almost phase separated” nature realized by the criticality of the Mott transition with

diverging κ at the critical point. If other symmetry breakings can be excluded, it is clear that

the enhanced compressibility causes such inhomogeneous charge patterns. Although it is not

clear whether the charge inhomogeneity is an intrinsic property of the high-Tc cuprates or it

is stabilized just by the randomness and/or surface effects, the observed STM image strongly
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suggests that they are close to the spinodal or nucleation regions of the phase separation,

because such inhomogeneous patterns have not been observed neither in heavily doped region

of the cuprates nor in weakly correlated conventional metals even when the randomness is

present. Though the charge susceptibility χc(q, ω) is suppressed strictly at q = 0 and ω = 0,

the experimental results suggests a substantial enhancement in the length scale smaller than

the size of inhomogeneous pattern (∼ 10 nm).

It should be noted that 3He system28,29 does not have charge in contrast to the electronic

systems. He system seems to show continuous transition without a clear phase separation. The

present analysis suggests that Tch is very low in this case. It would be intriguing to analyze

the Mott transition of 3He system on the substrate by the two-fluid or multi-fluid models

discussed in Sec.6, as we can examine a wide temperature range.

The proximity of the Mott criticality around the marginal quantum critical point re-

veals, first, enhancement of the energy scale of the instabilities to various orders with strong

competitions, and second, emergence of the electron differentiation in the momentum space

together with a tendency for the inhomogeneity in the real space. The electron diffferentiation

generates flat bands around particular points of the Fermi surface while it strongly favors

the anisotropic superconductivity. All of these unusual properties are indeed observed in the

high-Tc cuprates. The competing orders are a consequence of the mother criticality of the

Mott transition, which generates many daughter instabilities. Although various mechanisms

of the superconductivity has been discussed in the literature, the criticality of the quantum

Mott transition including the divergence of the charge susceptibility and charge fluctuations

has not been fully studied. From the present insight, the primary mechanism of the cuprate

superconductors is ascribed to the mother criticality of the quantum Mott transition, with

the diverging charge fluctuations. Secondary support of the pairing can be found in various

fluctuations induced by the competitors such as the antiferromanetic fluctuations, while it

does not drive the energy scale as high as in the Mott critical region.

Further studies along this line would certainly be an intriguing issue. More quantita-

tive analysis of the multi-furcation due to the Mott criticality would be desired not only

for searching superconductivity but also for other instabilities such as ferromagnetism and

ferroelectricity.
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